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Dual-Level Parallelism Improves Load-Balance

in Coastal Ocean Circulation Modeling

Abstract

Numerical grid generation techniques play an important role in the nu-

merical solution of partial di�erential equations on arbitrarily-shaped regions.

For coastal ocean modeling, in particular, a one-block grid covering the region

of interest is most commonly used. Most bodies of water have complicated

coastlines; e.g., Persian Gulf and Mediterranean Sea. In such a physical do-

main, the number of unused grid points can be a relatively large portion

of the entire domain space. Other disadvantages of using a one-block grid

include large memory requirements and poor resolution for a large body of

water; e.g., Paci�c Ocean.

In this study, we introduce a multi-block grid generation technique and

a dual-level parallel implementation to eliminate these problems. Message

Passing Interface (MPI) is used to parallelize the Princeton Ocean Model

(POM) ocean circulation code such that each grid block is assigned to a

unique processor. Since not all grid blocks are of the same size, the work-load

varies between MPI processes. To alleviate this we use dynamic threading to

improve load balance. Performance results from the POM model on both a one-

block grid and twenty-block grid after a 90-day simulation for the PersianGulf

demonstrate the e�cacy of the MPI-only and MPI/OpenMP code versions.

Keywords: Princeton Ocean Model, dual-level parallelism,multi-block grid, Persian Gulf simulation,
coastal ocean circulation model.
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1 Introduction

Poor computational grid resolution for large bodies of water has long been a problem

for ocean modeling. Sometimes, coarse grid resolution is not su�cient for planning

military operations. To overcome this di�culty, many modelers use nesting tech-

niques, in which a �ne grid resolution is used in the operation area (nested grid) and

results from the ocean model on a coarse grid (hosted grid) are used as boundary

conditions for the nested grid. Nesting techniques, however, generate nonphysical

re
ecting waves across the interface between the hosted grid and the nested grid [1].

Over the years, the traditional one-block rectangular grid has been used for ocean

circulation modeling. This technology encounters di�culty on computational grids

with high resolution due to the large memory and processing requirements. For a

large body of water, such as an ocean, with complicated coastlines, the number of

grid points used in the calculation (water points) is often the same or even smaller

than the number of unused grid points (land points). It is known that domain

decomposition can be used to partition the traditional one-block grid into sub-

domains that reduce the unused grid points and improve performance of the ocean

model [2]. MPI [3] can be used to parallelize this type of computation. A MPI

implementation with domain decomposition often requires a preprocessing step to

determine the most e�cient work distribution for the sub-domains in order to avoid

severe load imbalances [2]. Load imbalance adversely a�ects parallel performance

and scalability.

We propose a multi-block grid generation technique and parallel implementation

of the Princeton Ocean Model (POM) ocean circulation code [4]. The multi-block
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grid generation technique allows us to eliminate blocks composed mainly of land

grid points. It also allows us to choose the grid with minimum land points along

the coastline. In addition, a high horizontal resolution of an area of interest can be

handled easily. The advantages of multi-block grid generation techniques over the

traditional rectangular one-block grid and nesting techniques can be found in [5].

We describe the use of MPI and OpenMP [6] to exploit two levels of parallelism

in the multi-block computation. Since not all grid blocks are of the same size, we

use the OpenMP dynamic threading feature to improve the performance and load

balance in the POM code [7]. We have chosen the modeling of the Persian Gulf as

our prototypical problem to demonstrate the e�ectiveness of the multi-block grid

technique utilizing the dual-level parallel execution model.

We �rst describe our method for creating a multi-block grid from a single block

grid in Section 2. In Section 3, a review of the POM code and the physics modelled,

as well as the numerical simulation, is presented. Details of the parallel implemen-

tations (MPI-only and MPI/OpenMP) are given in Section 4. Performance results

of the parallel codes are included in this section as well. Our conclusions from this

study are presented in Section 5.

2 Multi-Block Grid Generation

A one-block rectangular grid and twenty-block grid are both used for this study.

The one-block grid was generated by a simple algebraic scheme using the EAGLE-

View software package [8]. EAGLEView is an interactive surface and volumetric
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grid generation program developed by the Engineering Research Center at Missis-

sippi State University. The twenty-block grid is a decomposition of the one-block

rectangular grid with the same resolution. The decomposition is done through the

use of several modules in EAGLEView. The I/O module allows the user to load

in the coastline data and the one-block grid data. The extract module is then able

to extract the land grid portion from the domain. Through the EAGLEView GUI,

this same module is used for decomposing the water grid portion into small blocks.

After having the water portion of the domain decomposed into blocks, the I/O

module is used again for writing coordinates values of each grid block into separate

�les.

2.1 Persian Gulf

The physical geographic area we chose for this study is the Persian Gulf. This area

extends from 48 East to 58 East in longitude and from 23.5 North to 30.5 North

in latitude. Part of the Gulf of Oman is also included in this physical domain.

Figure 1 shows the coastlines and geographic information for the study region. The

complicated features of the coastlines near Qatar, along the Strait of Hormuz, and

the northern part of the Persian Gulf present an opportunity to demonstrate the

advantages of multi-block grids within the POM code.

Figure 2 shows the one-block computational grid of the Persian Gulf region with

dimensions 291x211 (61,401 total grid points). The number of relevant grid points

in the one-block grid is 22,309, while the number of unused grid points is 39,092.

However, the twenty-block grid (Figure 3) contains a total of 32,031 grid points
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Figure 1 The Persian Gulf Coastline

with only 9,722 of those as unused. Approximately 70% of the total grid points

are actually used in the twenty-block grid calculation compared to only 36% in the

one-block rectangular grid. Also, since the twenty-block grid contains almost half

the total number of points as the one-block grid, we should expect to save up to

50% of the required memory needed to hold the grid model. We would also expect

a signi�cant reduction in serial execution time.

3 Model Descriptions and Simulations

The coastal ocean is a region receiving a great deal of attention due to an in-

creased utilization for human habitation, aquatic development and military opera-

tions. These activities require a knowledge of dynamic and thermodynamic struc-
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Figure 2 One-block computational grid with used and unused grid points

Figure 3 Twenty-block computational grid with used and unused grid points
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tures of the coastal regions such as water circulation, ocean wave dynamics, storm

surges, and evolution of seawater temperature and salinity. A review of the POM

three-dimensional, primitive equation, time-dependent, � coordinate, free surface

coastal ocean circulation model is presented in this section.

3.1 Governing Equations

The model primitvie equations describe the velocity, surface elevation, salinity, and

temperature �elds in the ocean. The ocean is assumed to be hydrostatic and in-

compressible (Boussinesq approximation).

The equations are written in a Cartesian coordinate system with x eastward, y

northward, and z upward. The free surface is located at z = �(x; y; t) and the bottom

is at z = �H(x; y).

The governing equations used in the POM model are:
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The density is computed by using the equation of state in the general form:

� = �(�; S; p): (5)

The balance of momentum is described by Equation (1), Equation (2) is the

hydrostatic equation, Equation (3) is the continuity equation and the conservation

equations for temperature and salinity are described in Equation (4). The Coriolis

force is denoted as 2~
� ~V , where ~
 is the earth rotation vector, ~V is the horizontal

velocity vector with components (U; V ), r is the horizontal gradient operator, �o is

the reference density, � is the seawater density, g is the gravitational acceleration, P

is the pressure, and Km and Kh are the vertical turbulent exchange coe�cients for

momentum of heat and salt, respectively. In Equation (4), �i may represent mean

potential temperature, �, or salinity, S. The horizontal di�usion terms ~F (Fx; Fy) in

Equation (1) and F�i in Equation (4) can be calculated using Smagorinsky horizontal

di�usion formulation [9].

The di�usion terms in Equations (1) and (4) contain the vertical turbulent ex-

change coe�cients which are determined by the second order turbulence closure

scheme of Mellor and Yamada [10]. The turbulence scheme is characterized by

equations for turbulent kinetic energy (TKE), q2=2, and for the turbulent mixing

length, `. The equations can be written in the same form for function Qi, so that

Qi is either q2=2 for TKE or q2` for the turbulent mixing length [11]. Detail of the

turbulence closure used in POM ocean circualtion model can be found in [10] as

well.
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3.2 Persian Gulf Simulation

The Persian Gulf is a shallow embayment of the Gulf of Oman, and the average

depth of the basin is only about 35 m. The greatest depths in the Persian Gulf

are approximately 150 m, and are located in the central basin and at the Strait

of Hormuz. The bathymetry data for both the one-block grid and twenty-block

grid are obtained from the NAVOCEANO's two minutes resolution bathymetry

database by interpolation. Figure 5 shows a color contour of bathymetry data on

the computational grid model. The portion of the Gulf of Oman used in this data

set, where the open boundary condition is imposed ranges to a depth of about 2000

m.

The POM model has realistic coastlines and bottom topography with 26 lev-

els of bottom-following vertical � coordinate. The model is initialized with the

NAVOCEANO's annual ten minutes resolution temperature and salinity General-

ized Digital Environmental Model (GDEM) database. Figure 4 shows the surface

temperature on the computational grid obtained by interpolation from the GDEM

database. At the open boundary the internal normal velocities are governed by

a Sommerfeld radiation condition. The open boundary condition for the surface

elevation is zero gradient normal to the boundary. Temperature, salinity and tan-

gential velocities are upwinded at the open boundary. The model is spun up for

30 days (diagnostic mode) in which the density distribution at all points on the

computational grids are held �xed in time.
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Figure 4 Surface temperature on one-block grid

3.3 Multi-Block Grid Serial Performance

Throughout the multi-block grid serial computation, each grid block is considered

to have four interfaces (west, south, east, north) for exchange of overlapping grid

points with other blocks. Information is updated after every time step in sequential

order from block number one to block number twenty. The time step is 40 s for the

external mode and 240 s for the internal mode. After 30 days of diagnostic mode

the model is then run for 60 days. Numerical solutions after a 90-day simultion of

the serial code version on the one-block grid and twenty-block grid yield identical

results.

Model output of the Persian Gulf annual surface circulation for temperature on

the one-block grid and twenty-block grid is shown in Figures 6 and 7, respectively.

The simulations were computed on the SGI Origin2000 at U. S. Army Engineer
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Figure 5 Bathymetry on one-block grid

Research and Development Center (ERDC) Major Shared Resource Center (MSRC)

in Vicksburg, MS. Serial execution time for a 10-day simulation on the one-block

grid was over 21 hours as compared to just over 16 hours for the twenty-block

grid. These results show the twenty-block grid serial performance was not overly

encouraging, however, we have saved 50% of the memory requirement of the one-

block grid code.

4 Parallelization of Multi-Block POM

POM is a standard Fortran code that was initially designed for serial computers

and later ported to vector machines. In the POM multi-block grid version, each

rectangular block grid is considered to have four neighboring interfaces (west, south,
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Figure 6 Surface temperature on one-block grid after a 90-day simulation

Figure 7 Surface temperature on twenty-block grid after a 90-day simulation
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east, and north) with adjacent blocks. Special considerations for computing with

interfaces bordering open ocean, or those without adjacent blocks, are built into

the model. While there can be only one shared interface between two adjacent

blocks, a block may have any number of adjacent blocks along a given block face.

For simplicitiy, the code used in this study restricted the number of di�erent blocks

adjacent to any one face at no more than two. (We anticipate no problems with

allowing an unknown number of adjacent blocks per face and are planning to modify

the code to handle such data sets in a future version.)

4.1 MPI

The serial version of the code includes four routines speci�cally designed to transfer

data between grid blocks. Processing blocks from the �rst to the last in order, data

is copied from those blocks that are adjacent to the current block and stored within

the appropriate ghost cells. After all blocks have been processed, the result is an

exchange of data between adjacent blocks; i.e., the amount of data copied from one

block into another is the same size as the data copied in the other direction.

With message passing these updates can be done in parallel. Because of the

symbiotic nature of the data exchanges, the amount of data that each block must

receive from each adjacent block must also be sent to those adjacent blocks. In the

serial code, the order of updates was governed by processing all adjacent blocks on

one interface before proceeding to the next interface (chosen by moving around the

compass points of the interfaces).

Data is sent to all adjacent blocks within the same interface and the interfaces
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are processed in order as in the serial version. However, asynchronous receives are

posted by each block after each set of data is sent. After all data has been sent,

each block processes the actual receipt of data. The exchange between blocks is

completed after the data has arrived in the block's processor and been moved into

the appropriate overlapping grid points. This use of asynchronous sends has three

advantages:

1. Hides message latency since blocks may continue to send data to other blocks

without regard to whether or not corresponding exchange data has been re-

ceived.

2. Avoids deadlock by ensuring that all blocks are not waiting for a receipt of

data from an adjacent block that is expecting to receive data from the same

compass point interface.

3. Reduces coding complexity due to the fact that attempting to perform syn-

chronous exchanges of data would require adding code to choose and coordinate

certain blocks to exchange along their western interface while others exchange

along their eastern interface.

The order of synchronous exchanges between blocks with two or more adjacent

blocks along an interface would need to be coordinated correctly. Failure to perform

the exchanges in the proper order would result in, at best, a serialization of the

exchange process or, at at worst, a deadlock.

Since all blocks synchronize to some extent at the communication routines, those

blocks with less computation to be done will tend to spend more time waiting for
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completion of data exchanges than blocks with more grid points. Normally this

would be a cause for concern in many parallel applications and would likely point

out that the load balance among MPI tasks needed to be balanced more closely.

However, in order to balance the workload more evenly in the multi-block version

of POM would require a complete restructuring of the grid blocks in the data set.

Another means of creating a more balanced execution time between updates would

be to further parallelize the computations in those blocks that have been assigned

larger numbers of grid points. We explore methods to achieve this in the next

section.

4.2 OpenMP

OpenMP is a collection of compiler directives, library routines, and environment

variables that can be used to specify shared memory parallelism. OpenMP allows

the POM code to be parallelized at a �ne granularity (Fortran DO loop level).

Pro�ling the serial code revealed several routines that accounted for more than

half of the total execution time. The VAMPIR (Pallas) performance analysis tool

was used to identify individual loops that resulted in the majority of the execution

time within these selected routines. A number of these loops were chosen and each

was analyzed for data dependencies before OpenMP directives were inserted. Re-

sults from these initial experiments were not overly encouraging. A slight decrease

in the overall execution time was demonstrated with four OpenMP threads per

process.

Many di�erent loops within the code were prime candidates for OpenMP di-
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rectives. However, we were daunted by the task of manually inserting directives

throughout the code. Fortunately, the MIPSpro version 7.30 Fortran 90 compiler

on the SGI Origin2000 is equipped with an Auto-Parallelizing Option 
ag (-apo)

to automatically analyze loop dependencies and insert OpenMP directives where it

is safe to do so. From previous experience with the dynamic threading feature of

OpenMP [7] and the similar load imbalance characteristics inherent in the multi-

block grid structure, we examined two methods of using OpenMP with a dynamic

number of threads.

Our �rst method involved manual control of the number of threads spawned by

each process in conjunction with compiling selected routines with the -apo 
ag. A

threshold of the minimum amount of work needed to spawn a thread is set and

each process computes the number of threads (up to some set maximum num-

ber) that should be used based on the assigned workload. The OpenMP routine

OMP SET NUM THREADS is called after the number of threads for the process

has been found. When a process determines that a single thread is to be used,

the original serial routine is called, otherwise the version with added directives is

called. It is assumed that the overhead needed to create a single OpenMP thread,

often multiple times within a single routine, is avoided. We refer to this method as

manual MPI/OpenMP.

The second method was to use the Auto-Parallelizing Option 
ag when com-

piling all routines in the POM code. Before execution the environment variable

OMP SET DYNAMIC is set to .TRUE.; this allows the SGI Origin2000 runtime

system to choose the number of threads spawned by a process at each OpenMP.
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One potential drawback to this method is the overhead of spawning a single thread

to process a small data set. We refer to this method as automatic MPI/OpenMP

Obviously, the �rst version of dynamic threading requires much more work and

planning than the latter method. However, the �rst method gives a better improve-

ment in the execution load balance within POM routines. Results from three di�er-

ent executions (MPI-Only, manual MPI/OpenMP, and automatic MPI/OpenMP)

are discussed in the next section.

4.3 Parallel Performance

Synchronous communication occurs periodically between the MPI processes during

the computation. Therefore, MPI processes with less work (i.e., smaller domains)

must wait for slower processes to complete before proceeding with the computation.

In order to quantify the degree of load imbalance within a given code segment, we

de�ne idle time as the ratio of execution time to maximum execution time expressed

as a percentage:

%idle = 100%�

PN�1

i=0 ti
N � tmax

(6)

where N is the number of MPI processes, ti is execution time of process i, and tmax

is the largest time ti.

Pro�ling the serial POM code with the SpeedShop pro�ling tool on the SGI

Origin2000 revealed several routines which consumed over half of the execution

time. The top one among those routines is PROFQ which takes nearly 20% of the

total execution time in each processor.

18 of 23



March 2, 2000 Dual-level Parallelism in POM

Figure 8 PROFQ (MPI-only) Cumulative Execution Time in seconds

All results presented herein are for the twenty-block grid data set. Figure 8

shows the timing results of the PROFQ routine of the MPI-only code for a run of ten

simulated days running on 20 SGI Origin2000 processors. A measure of 38% idle

time was committed within this routine. The total wall-clock execution time of this

POM code run was 108 minutes.

With the manual MPI/OpenMP version of the code run on 20 processors with

a maximum of four OpenMP threads per process, a measure of 21.1% idle time

was committed. Figure 9 shows the PROFQ routine timing results for this ver-

sion of the code. Under the automatic MPI/OpenMP code, a measure of 29%

idle time was achieved within the PROFQ routine (Figure 10). While the manual

MPI/OpenMP code had the best load balance of the three code versions, it per-

formed worse in the overall wall-clock execution time (46 minutes) than did the

automatic MPI/OpenMP code (32 minutes).
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Figure 9 PROFQ (manual MPI/OpenMP) Cumulative Execution Time in seconds

Figure 10 PROFQ (automatic MPI/OpenMP) Cumulative Execution Time in seconds
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5 Conclusions

We have demonstrated that the parallel multi-block grid techniques applied to the

POM ocean circulation model will eliminate those problems inherent in one-block

structured grid codes The timing results show a signi�cant improvement in the

execution time as well as in the load imbalance produced by MPI-only execution.

Numerical solutions after a 90-day simulation of the model on the one-block and

twenty-block yield identical results.

We have also shown that through use of the dynamic threading feature within

OpenMP, load balance between the MPI processes can be improved. By using the

dual-level algorithm and the grid generation technique presented in this study, we

were able to run a 10-day simulation of the Persian Gulf in less than one-half hour

as compared to 21 hours for the traditional serial one-block grid version of the

code. We were able to achieve a twenty times speed up for the MPI-only version

on 20 SGI Origin2000 processors and a forty-�ve times speed up for the automatic

MPI/OpenMP version.

The serial performance of the multi-block grid was not overly encouraging, how-

ever, we were able to save almost 50% of the memory requirement of the one-block

grid code. With such a signi�cant improvement in performance and memory re-

duction, we now can apply these techniques for ocean circulation simulations on a

larger ocean data set with a higher horizontal resolution.
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Future Work

As mentioned earlier, one advantage of the multi-block grid generation technique

over domain decomposition is that the multi-block grid allows us to generate a grid

with a minimum number of land points along the coastline. Grids can be packed

with a high horizontal resolution in any area where needed. As a follow up to

this study we plan a performance study on a forty-block grid with a more even

work load distribution. Another study would involve packing high resoltion grids

where needed. These studies are intended to show the advantages of the multi-block

method over both nesting techniques and parallelization by domain decompostion

techniques.
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